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The flow of a Maxwellian fluid in a plane channel whose boundaries move at given velo- 
cities is considered. The problem need not have a continuous solution in the event of 
mass flow through the channel boundaries. The factors occasioning a discontinuous solu- 

tion are discussed. The three-constant Oldroyd model is used as an example to analyze 
the possible discontinuity structure of the initial two-constant model. 

1. Let us assume that the flow of a viscoelastic fluid depends on the single coordinate 
z and that the behavior of the fluid is described by the rheological equations of Oldroyd’s 

“contravariant” model Cl1 pij = _ psij + Tij, Tij + hiTTij =2qeii 

Tij’= aTii / dt + vkTij, k - v~,~T,~ - vj,kTik 
(1.1) 

Let the velocity vector be of the form V = (u,, 0, v&, let the tensor Tij have the non- 

zero components T,,, TX:, Ttz, and let the longitudinal pressure gradient and external 
body forces equal zero. In the steady-flow case which we shall consider the continuity 
equation implies that v,, = const; the equations of motion and relations (1.1) yield the 

following system of equations closed with respect to 0%’ TX?, T,,, T,,: 

dv, dT,, dT,Z dv, 
-=- 

pvO dr dz ) voyjy-T,, dz 

T,, + hl (vo q - 2T (Ev,\__O 
xz dz / ’ 

dT,,=O T,, + hvo dz 

(1.2) 

(1.3) 

We are required to find the solution of system (1.2), (1.3) in the domain 1 z I< a (a 
plane channel) which satisfies the following boundary conditions. 

We are given the longitudinal velocity uX (--a) = u1 and v,(a) = u2 (i.e. we are 
dealing with Couette-type flow). In addition, we are given the stresses T,, and T zz at 
the line of entry of the stream into the channel. For example, in the case of injection 
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(vO > 0) we know that I’,, (-a) = T,, T,, ( -a) =Z’,, while with suction we have 
T,, (a) = T’, T,, (a) = T’. 

The case vX (-a) = ul, v, (a) = u2 can be readily reduced to the case ~1~ (-a) = 0, 
V,(a)= uz - ~1 s u by converting to a different inertial coordinate system. 

The second equation of (1.3) has the solution 

T,, = T,exp (--h - f), 5 (2) = Zlh12’0, h = 5 (a) (1.4) 

With a known distribution ofl;,values Eqs. (1.2) form a closed second-order system 

to which we must add two boundary conditions of “adhesion” of the longitudinal velocity. 
The first equation of (1.3) then enables us to find TX,. 
The second equation of (1.3) has the particular solution T,, s 0 corresponding to one 

of the two boundary conditions T,, = 0 or To = 0. This solution is used by the authors 
of p, 31 to consider the Couette flow described by model (1.1) with injection and suc- 
tion. However, it is also possible to have a nonzero distribution T,,(z) which is consist- 
ent not only with the initial system of equations, but also with the following considera- 

tions . 
For example, let the fluid be guided towards one of the walls by a system of capillaries 

in which there is fully developed flow along the z-axis. Considering the problem of 

Poiseuille flow in a circular capillary of radius r. with an impermeable boundary for 
model (1. l), we find that the distribution T,, (r) is not equal to zero, but is of the form 

T,, = L -!% &‘+2, 8P 

2 q 
P = - x = const Q<r,<r, 

Moreover, the averages (T,,) and (v,> over the cross section of the capillary are rela- 

ted as follows: (T,& = 16 Ql(vz>* f ro2 

This means that specification of a positive T zz at the line of entry of the fluid into 

the domain 1 z 1 < a is physically permissible. 
Substituting T,, from (1.4) into (1.2), we obtain a first-order differential equation in 

T xz ’ dT,z 
a&? (2) - voy - 

dz - voT,z = 0, (1.5) 

The quantity 2 (z) is the square of the speed of “transverse sound” and must be posi- 
tive (otherwise the equations describing the small perturbations of the flow are nonevolu- 

tionary [4, 51). 
It is clear that the condition of evolutionary character of one-dimensional flows depen- 

dent on.z is fulfilled for T,, > 0 , 
The three-dimensional perturbations are evolutionary only if both Tzz + q / hl > 0 

and (T,, + v’&)(T,, -i II / hi) > TXza in the steady flow under consideration. 

If the coefficient of the derivative in Eq. (1. 5) does not vanish anywhere in the chan- 

nel, i. e. if the transverse flow is either strictly subsonic or strictly supersonic, then the 
known value of the shear stress at one of the boundaries (e. g. at the lower boundary 
TxI (--a) = rJ can be used to find the distribution Txz (2). The quantity r. in this case 
can be determined unambiguously from the given u and To with the aid of the integral 
of the equation of motion projected onto the x-axis, which in the absence of a longitu- 
dinal pressure gradient and external body forces is given by 

pz’o~r = T,, - ‘to 

The resulting formulas for the distributions Tzf (z) and v, (z) are 
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(1.6) 

The relationship between r0 and the parameters of the problem is of the form 

(1.7) 

Setting u = 0 in (1.7) and taking the limit as h, -$ 0, we obtain the familiar formula 
for the analogous flows of a viscous fluid, 

pvou = ro[exp (2av0 / Y) - I], v=nIp 

Now let us consider the case where the coefficient of dT,, / dz in (1.5) vanishes at 

some point 20 E (---a, a) , i. e. where the transverse flow changes from subsonic to super- 
sonic. The coordinate of the sonic line is given by the equation 

(I exp (-Co) = 1 - co2 / vo2, to = 5 (zo) = z0 / h1vo 

The above equation has a solution in the interval 151 <I h 1 (under the condition 
To > 0) if the parameters of the problem satisfy the following inequalities: 

P (Do2 - co2) < To < p (vo2 - co2)ezh, 00 > co 
P (no2 - co2)e2!’ < T, < p (vo2 - co2), vo < - PiI 

Equation (1. 5) in this case can be written as 

x-‘fi - exp (co - C)ldT,,l d6 - T,, = 0 

In the neighborhood of the point 50 this equation can be replaced by 

x-i (6 - &#I’,,/ d5 - T,, = 0 

The general solution of the latter equation is of the form 

T,,=CIC-LIX 

In the variable plane T,,c the point (0, co) is a singular point of Eq. (1. 5). Since 
To > 0, it follows that x < 4, and the singular point is a saddle point. All of the inte- 

gral curves T,, (6) except the straight line T,, = 0 go to infinity as 5 tends to fo. A 
solution of the problem is then nonunique. The boundary conditions imposed on the lon- 
gitudinal velocity vt (5) can be satisfied for any given value of rO. In this case the quan- 
tity r0 cannot be found from a formula of the (1.7) type, and must be given. This means 
that the above problem has infinitely many solutions in the “transonic state” and that 
all of the solutions which satisfy the “adhesion” conditions for the longitudinal velocity 
at the channel boundaries have no physical meaning: the velocity vx becomes infinite 
at the sonic line, and, since x < 4, the fluid leakage rate in the channel becomes 
infinite. 

We note that if To is allowed to have values in the interval (-n / hr, 0), then the sin- 
gular point is a node and the quantities TX2 and vz have weak discontinuities at the sonic 
line, The solution in this case is nonunique, as in the case of a saddle point. 

We have therefore established that a continuous transonic flow which satisfies the adhe- 
sion conditions for the longitudinal velocity at both channel boundaries cannot be con- 
structed for x < 4 . On the other hand, if we surrender the adhesion conditions at one 
of the walls, we can construct a unique continuous solution of the form T,=O, v,=const. 
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Hence, the criterion of existence of a unique solution continuous throughout the channel 
is the absence of the second boundary condition. On the other hand, in the case of tran- 
sonic flow with x > 0 two adhesion conditions for the longitudinal velocity turn out to 
be insufficient for determining the unique continuous solution, and it is necessary to spe- 

cify a third boundary condition, e.g. T,, (-a) = q. 

A similar situation obtains in the case of one-dimensional unsteady flow. For example, 
let us assume that the steady flow under consideration is subject to the small perturba- 

tions &I,, 6T,, which depend on z and t alone. Provided the speed of sound does not 
fluctuate, we have the following system of equations in Sv,, 6T,,: 

The slope of the chapcteristics of system (1. 8) is determined by the equations 
dz 

-c = 00 + c (z), 
dt 

dz 
L = 210 - c (z), 

dt 

According to [Sl, system (1.8) has a unique solution which is continuous in the rec- 
tangle R (I z 1 < a, 0 < t < T) in the subsonic case if we specify one boundary condition 
for 3X -a and one condition for z = a. 

In the case of supersonic flow we must either specify two boundary conditions at 
z = -a if co > 0 or two conditions at I = a if v. < O.The total number of boundary 

conditions in all these cases is two. 
If the flow is transonic, then the straight line z = z0 is the characteristic which sepa- 

rates the subsonic domain on the plane zt from the supersonic domain. In the case 
x < --1 it turns out that the subsonic domain lies to the right of z. for zyo < 0 and to 

the left of z. for zlo > 0. The total number of boundary conditions ensuring the unique- 

ness of the continuous solution is therefore one. In the case of transonic flow for x > 0. 

the number of boundary conditions is three, since the subsonic domain lies to the left of 

z0 for v. < 0 and to the right of z. for v. > 0. 

Analysis of model (1.1) in the case of flow between coaxial cylinders moving at pre- 
scribed velocities along a common axis in the presence of a radial velocity vr yields 
results similar to those obtained for a plane slit. Instead of Eq. (1.5) we have 

Continuous “transonic flow” in channels of the above type is also impossible to con- 
struct in the case of a longitudinal pressure gradient and x < -1. A similar situation 
obtains with other models of a Maxwellian fluid with finite elastic strains, e. g. with the 
equations of Oldroyd’s “covariant” model [l] or of the De Witt model [S]. 

2. A solution of the above problem with a discontinuity of the second kind at the 
sonic line is physically unsatisfactory. It is therefore natural to attempt to construct a 
discontinuous but bounded solution of the problem. The introduction of finite disconti- 
nuities in a dissipative medium entails the imposition of additional dynamic conditions. 
Let us consider the equation of motion projected on the z-axis, 
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dvzc dTT,z 
“, dz 

-= ~fv-fx (2.1) 

Here p =-ap / az and f, is the density of the external body forces. Expressing the 
discontinuous distributions of the quantities v, and TZr as the limits of continuous distri- 
butions which change abruptly in the neighborhood of some point z = 5, we find on the 
basis of the results of [71 that- 

ptt,fvs) - {T,,)= P (2.2) 

The quantity F is defined as the limit E-l,e 
F = lim 

L-+0 I 

f,& 

E-E 

and represents the density of the external surface forces acting along the line z = E. It 
is also possible to define the surface moment of the external forces, which turns out to be 

Eta 

M = lim 
r++o s 

(z - 4) f .dz 
E.-E 

Making use of the appropriate rheological equation (the second equation of (1.2)) for 
model (1.1) and of equation of motion (2. l), we find that 

M = &I+ (E)cv,J - &v,(T,? (2.3) 

The quantities F and M in two-constant model (1.1) represent the given external for- 
ces. It is not difficult to generalize formula (2.3) for the case of contact of two visco- 

elastic fluids. 
Let us assume that the external surface forces are equal to zero at some point. We 

then have the following system of equations for determining the jumps {vX) and {TX,) : 

PO IvJ - V,,) = 0, b%,k- &v. (T,,} = 0 

The determinant of this system is A = hip (c2 - va2). Hence, (v,) = 0 and {TX,) = 0 
if at this point es # vf. If, on the other hand. ca = ~~2, then (as we infer from Sect. 1) 
the jumps {D;} and (Z’,,) are equal either to zero or to infinity. We reject the latter 
alternative as physically meaningless. 

Returning to the problem formulated in Sect. 1, we naturally assume that no external 
surface forces or moments are acting inside the channel, so that the solution must be 
continuous in the interval 1 z I< a. In the transonic case with x < --1 the distributions 
of T,and vX inside the channel must be of the form TzL = 0, v, = const. This means 

that the boundary condition for the longitudinal velocity can only be satisfied by intro- 
ducing the quantities F andM at the permeable walls. In the simplest case we can 

assume that the domain 1 z 1 > a is occupied by the same viscoelastic fluid and approx- 
imate the channel boundaries by discontinuity surfaces at which the external forces and 

moments defined by formulas (2.2).(2.3) are given. 
For example, let us consider “transonic injection”, assuming that the entry line z = --a 

is free from external forces and moments. This means that there is no velocity jump at 
the lower wall and that vX (z) = 0 for --a < z < a. If the exit line z = a is also free 
of external forces and moments, then vX (a) = 0, and flow with prescribed boundary 
velocities is impossible. In order for vX (a) = u at the exit we need merely apply the 
force F = pvou and the moment M = hi@ (a)~ to the surface z = a. 

We note that in the case of external surface forces and moments the solution has a 
discontinuity at the wall even if the injection velocity does not pass through the speed 
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of sound inside the channel. 

3. In real flows the discontinuity surfaces take the form of narrow zones characterized 
by abrupt changes in the flow parameters. One of the possible discontinuity structures 
arising at a wall confining a Maxwellian fluid stream is the boundary-layer flow of the 
three-constant model of a viscoelastic fluid with very small retardation times. 

Let us consider the problem of Sect. 1 for an incompressible fluid whose behavior is 

described by the following rheological equations [11 : 

pij = - p&j + Tij, Z’ij + bT{j’ = 2q (eij -I- b&j’) (3.1) 

eij’ = &ij/tYt + vkeij.h_ - vi,kekj - Yj,@ik 

Here jlI is the relaxation time and A, the retardation time. For this flow the first equa- 
tion of (1.2) and the second equation of (1. 3) remain unchanged for the three-constant 
model ; the second equation of (1.2) is replaced by 

(3.21 

This equation and the first equation of (1.2) and (1.4) imply that T,, satisfy a differ- 
ential equation which, unlike (1.5). is a second-order equation, 

dT,.. 
7-i” --$ T,,=O, 

z 
G = hlV&J 

(3.3) 

Equation (3.3) contains the parameter p = hr / h,. We must investigate the behavior 

of the solutions of this equation as u tends to infinity. 

Let us consider the case where Eq. (1.5) has a saddle point co in the interval 1 c 1-C 1 h Is 
It is clear that in the neighborhood of the point CO the behavior of the solutions of Eq. 

(3.3) is well described by the equation 

TX,=0 (3.4) 

Equation (3.4) is an approximation of Eq. (3.3)for 1 5 - to 1 4 1. Specifically, for 
2a 4 hr 1 $1 (the width of the channel is much smaller than the distance at which stress 
relaxation occurs) Eq. (3.4) can be applied throughout the channel, We make use of this 

fact in the discussion below. 
Let us replace the unknown function by setting 

T == cp (I; - S0Wp 1%~ W. / co2 - 1) G - goI 

In this case cp (5) satisfies the equation 

(3.5) 

The general solution of this equation is of the form 

Y (k7 mY I) = y f--k, m$ -5) = clMk,rn (5) +’ &Mk._rn ($1 

The Whittaker function Mr,m (z) is given by the equation 

iw,., (I) = P+l’s e -‘/G (r, (m-j- ‘ia - k, 2m i_ 1; 5) 

where CD (u, b; z) I 1Fl (a, b; I) is a degenerate Kummer hypergeometric function, 

For Eq. (3.4) we have the boundary conditions 

T,, (--hf = @or TJz (Q = 30 + ~0”” (3.6) 

which follow from the boundary conditions specified for the following third-order system 
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closed with respect to vI and T,, and consisting of the first equation of (1.2) and Eq. 

(3.2) : vx (-h) = 0, v# (h) = 4 T,z (-h) = 80 

We emphasize that the specified shear stress T,, (-h) = 8, in the three-constant 
model is a natural boundary condition associated with the higher order of the model. 
The quantity 8, must either be determined by experiment or specified on the basis of 

additional physical assumptions. It is also possible for the quantity &, to depend on the 

parameter k. 
A continuous solution of boundary value problem (3.6) for Eq. (3.4) exists for all values 

of u and 6,. Let us write out this solution for the condition x < -1, assuming for simpli- 

city that CO = 0 
1 6 @P/4 - P? z/2; wL62) 

Txz = 2 pvou h ,a (% _ p, 3i2; .@2) 

To obtain the asymptotic form of the solution we use the formula 

r (9 

The asymptotic formula for T,, as p + m then becomes 

ICI>/ E>O, x’ = (vo2 / co2 - 1)-l > 0 

Let us introduce the notation T,z* (6) = lim Txz (5, p) as p ---, DC‘. Expressions (3.7), 
(3. 8) then imply that the function TZL* (5) is of the form 

T,’ (--h) = % T,’ (5) = 0 ( 15 I < I hl 1, TX, *(h) = 8, + PVOU 

For the function vX* (5) = limv, (5, p) as p--, 30 we have 

vX* (-h) = 0, EC* (5) = - Bo/PVo (i5l<lhlh v%+(h) = u 

As is evident from the above formulas, the limiting shear stress and longitudinal velo- 
city distributions are discontinuous. 

We note that the longitudinal velocity distribution of the three-constant model for a 
finite p can also be achieved in the two-constant model. Let the functioas V, (z), 

T, (z) satisfy the first equation of (1.2) and Eq. (3.2). We set 
z 

0, z v,, kcz = Tx, - -$ j e=P 5 V,” (Y) dY 
--a 

The functions v,, hz satisfy the system of equations 

dv, dz,z 
pvo dz - = yjj--- + fr(z, P)* iz,, + k !vo + - T 

dv, \ 
L%- (3.9) zz dzj=q dz 

It is easy to see that the second equation of (3.9) coincides with the second equation 
of (1.2). and that the first equation of (3.9) is the equation of motion in the presence 
of body forces of a special type_ 

i 

L 

i.(z,p)=$- V,“(z)- J-& 1 e=p 5 Vx”(y)dv 
--a 

As p tends to infinity the density of the body forces with a distribution of the form 
(3.8) increases without limit at z = f a,. In the limiting case we can use the scheme 

described in Sect. 2, replacing the “retardation boundary layer” by a discontinuity 
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surface. The discontinuous solution of the flow problem for the two-constant model is 
then uniquely determined by the quantities F and M. These quantities, e. g. at z = - a 
can be computed from the formulas 

F(-u)= ~~~~l-~+;&,p,&), 
-a 

M (- a) = Jls (;~im_$;z + a) f*(Z, /.&) dz) 
--(I 

In the na~ow-channel approximation we obtain 

a 
F (a) = (00 + PVOU) - GO 

What we have said in this section implies that the infinite discontinuities described in 
Sect. 1 have no structure in the three-constant model. This fact indirectly confirms the 

physical meaninglessness of such discontinuities. 
The author is grateful to G, A, Liubimov and S. A. Regirer for their useful comments, 
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